
Security Assessment

Bytemasons - Stablecoin
CertiK Verified on Nov 28th, 2022

Executive Summary

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

1 Major 1 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

1 Medium 1 Partially Resolved Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

4 Minor 2 Resolved, 2 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

8 Informational 3 Resolved, 3 Partially Resolved, 2 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY BYTEMASONS - STABLECOIN

CertiK Verified on Nov 28th, 2022

Bytemasons - Stablecoin

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

DeFi

ECOSYSTEM

Fantom

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 11/28/2022

KEY COMPONENTS

N/A

CODEBASE
https://github.com/Byte-Masons/liquity-dev

...View All

COMMITS
7086d2aa437420d4a8c8a6073bed258d874766c9

e47f8f2a5f8e60e1b04339511f90f8481ab26995

...View All

14
Total Findings

5
Resolved

0
Mitigated

4
Partially Resolved

5
Acknowledged

0
Declined

0
Unresolved

https://github.com/Byte-Masons/liquity-dev

TABLE OF CONTENTS BYTEMASONS - STABLECOIN

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Overview
External Dependencies

Privileged Functions

Findings

GLOBAL-01 : Third Party Dependencies

BMB-01 : Centralization related risks

BMB-02 : Potential Attacks when price oracle goes down

BMB-03 : Susceptible to Signature Malleability

BMB-04 : Economic Model - Gas Compensation

SPB-01 : Event Is Not Emitted

GLOBAL-02 : Whitelist for the Collateral Tokens

GLOBAL-03 : Governance Model - New Feature of Pause

BMB-05 : The Tellor protocol does not support the Fantom chain for now

BMB-06 : Missing Error Messages

BMB-07 : Missing Emit Events

BMB-08 : Economic Model - Minimum Net Debt

BMB-09 : The Same MCR and CCR for All the Allowed Collaterals

BOB-01 : Missing a Check for Collateral on `adjustTrove()`

Optimizations

BMB-10 : Useless Statement and Variables

BMB-11 : Redundant Code Components

Formal Verification

Considered Functions And Scope

Verification Results

TABLE OF CONTENTS BYTEMASONS - STABLECOIN

Appendix

Disclaimer

TABLE OF CONTENTS BYTEMASONS - STABLECOIN

CODEBASE BYTEMASONS - STABLECOIN

Repository

https://github.com/Byte-Masons/liquity-dev

Commit

7086d2aa437420d4a8c8a6073bed258d874766c9

e47f8f2a5f8e60e1b04339511f90f8481ab26995

CODEBASE BYTEMASONS - STABLECOIN

https://github.com/Byte-Masons/liquity-dev

AUDIT SCOPE BYTEMASONS - STABLECOIN

60 files audited 14 files with Acknowledged findings 46 files without findings

ID Repo Commit File SHA256 Checksum

LBD

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/LiquityBase.sol

1458e40af0331a0a54f4d3dab9868acd

4d5947137bc4feca6792a94d5b1b793

3

TCD

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/TellorCaller.sol

c4695396044b0a68d7b7577027ee69c

e3348b75b454c5078c885d7d945a706

44

CIL

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/LQ

TY/CommunityIssuance.sol

1fc12d7125f2f1f7355b45da8e1158f30

7b6eff870f4b80f8d4d902e18ca22b6

LQY

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/LQ

TY/LQTYStaking.sol

345a66d88133cc1fe8a5a5e4922dacca

2bb982206b5b3a19b26f5e214f238286

APB

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Acti

vePool.sol

cab87d196613f4a72c8de2ddb6e3fbfb

7c94a794806d6c777c76dc1f83f53dd8

BOB

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Bor

rowerOperations.sol

6f171e7ceb02d6443d5cf2225b85fa65

951bc9e209dd63bf2e79f1f9e86d6f14

CSP

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Col

lSurplusPool.sol

0de226fbce27d0831ce6dfb050b3b2fa

1db2136e5935f7f93df3410213ec36d2

DPB

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Def

aultPool.sol

a18ad14334ff9911b8886d96d54fa460

0017358c3ec2569ce9aaa08b64e58ba

3

HHB

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Hin

tHelpers.sol

ec8d8f2fc601b1a40bd7febf06f676563

5e1cf161213967d542e8ebc8ef6bea1

AUDIT SCOPE BYTEMASONS - STABLECOIN

ID Repo Commit File SHA256 Checksum

LUS

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/LU

SDToken.sol

d51c34e6b5b779da4ec2016fac2261d9

3432b8ea67cf76d31fbf677acb659969

PFB

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Pri

ceFeed.sol

b460d78c70a48e69a0dd0aed5d533c9

942327af702d6a4d69ed315ad0647e9

36

STB

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Sor

tedTroves.sol

ed1bbed4701f8b7f1e857bb7aa4e1eda

c246235ec82b4de43ca374a6e3b2682

8

SPB

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Sta

bilityPool.sol

fc0bf68b2ed964893a8b72d7fcf1dea6c

7eb44699d1f27215983fe14fbdd766e

TMB

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Tro

veManager.sol

2107ec0d547ee1b21f753c0ce2b5c4bb

344fd232cacba20958d7c27510140220

ADB

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/Address.sol

05a6a49cf9cc82c283f36d65e20f1e16f

bf850588cb3312ad3c52f15eb4b6a12

AVI

Byte-

Masons/liquity-

dev

7086d2a

packages/contracts/contracts/De

pendencies/AggregatorV3Interfac

e.sol

b2ebef44df63d7e32405e0eb398a5868

123c5f1800005c02d44d53cec38a28df

BMD

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/BaseMath.sol

fada1c3c95dcfa780a6d03bab5e1f3292

01a30ec94140b54818559f9e720cbc4

CCD

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/CheckContract.sol

aa32079b9f38a1669beb9fefe2e0af95f

c543e1b717617713f00a648f0dc4b66

IER

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/IERC20.sol

64f3e9f771f7ba660ba11cf966318da69

2834288126f5b58601d8ba3ffc1a3fa

IEC

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/IERC2612.sol

83a6ac8c0f185342c500ada926f0dbe7

34a959382bbcbe8e1c69bcf7faa2454b

AUDIT SCOPE BYTEMASONS - STABLECOIN

ID Repo Commit File SHA256 Checksum

IED

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/IERC4626.sol

51b6a0541758e81e0a7528d0f25279fa

41dea20ec24e520f575b3b959a470db

c

ITD

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/ITellor.sol

01e59ebf4bb055a20905ea2d223d364

d0e0ad8dcf4e3584dab245a9a3e4cacc

a

LMD

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/LiquityMath.sol

0d418289d7ba0ab052d1fff29b3c832b

d809175d9bd69b8cd5552184a5e1bf1

7

LSM

Byte-

Masons/liquity-

dev

7086d2a

packages/contracts/contracts/De

pendencies/LiquitySafeMath128.

sol

93aa3e470a6e581ea7e515d2e34737f

5e619af229637054ac09f0d303c0bddd

2

ODB

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/Ownable.sol

645208d3053f1ee614b73776e9c638f4

529062bfc3333fa06ba5663d9193405b

SER

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/SafeERC20.sol

c8415a0fc3e2468a9875150199538a8

861a4f242036981dc5bf963784c42ec0

4

SMD

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/SafeMath.sol

caa5397440fd9a0988eb40c136bd7a5

8baad05012edcf244f6b586e167e531f

6

CON

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/De

pendencies/console.sol

fe7de02fbe78bf1af499331c9a5a40429

9a7141f0800e942e29b55c8c64029dc

IAP

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/IActivePool.sol

6234a3f23243411ec38aefdc2b05ad73

10c360202e28b5064c32f61a334002ac

IBO

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/IBorrowerOperations.sol

5871184e47b1915b0a1ea746c895ac5

ed6e0b6a6d7339bccb75fa73454022b

97

ICS

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/ICollSurplusPool.sol

e2468140313d3222388f964d1128d3b

e47abd0814f0dac5ce708b866cee26c8

0

AUDIT SCOPE BYTEMASONS - STABLECOIN

ID Repo Commit File SHA256 Checksum

ICI

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/ICommunityIssuance.sol

1b25e623b3db2a2d18dd30d347823e8

640f601747a3632fb941d9bcdf84fd898

IDP

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/IDefaultPool.sol

e39e723083a938120f1d3725eb6c4ba

aac4f903b35ecec88f6799c72bc8bc43

2

ILQ

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/ILQTYStaking.sol

946b32e1d3177acb9d93143f5891992

92eb207bf9482dbcb44afca45cf1ca623

ILT

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/ILQTYToken.sol

6d54ecced315fda5a33ddeaf729f178fd

55cb5d0990fa7157272fdf1efa2b9df

ILU

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/ILUSDToken.sol

30ce23ad28599dbf8c1273ff7d622a804

297194fb0c3be89da25548f0b7c67a1

ILB

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/ILiquityBase.sol

48697f434db39ab90174b90dd36ce65

4ec78e3e8ed169efb2dad119761fdab4

a

ILC

Byte-

Masons/liquity-

dev

7086d2a

packages/contracts/contracts/Inte

rfaces/ILockupContractFactory.so

l

7e7c6a8d9f4dc43a6f02b1de70175a59

64f7ef6e835492d426f8aa1854e20358

IPI

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/IPool.sol

faabec3b0e076b7e0082fbdaf616afdad

9bc6d9ee024a4b22895127d7fb959a1

IPF

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/IPriceFeed.sol

65e2a0fa0a29f8574cec5d574383bbe7

80897b96313d718f9cbd376ac9ce3319

IST

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/ISortedTroves.sol

426ac4fe18c04834b64d068a4c310e82

71969cebf020e4ed885bc97a0891939

3

ISP

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/IStabilityPool.sol

0efa7deae6057b70d2aa25e3c90af13e

99709f5a83d562022faa0116131c1a10

AUDIT SCOPE BYTEMASONS - STABLECOIN

ID Repo Commit File SHA256 Checksum

ITC

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/ITellorCaller.sol

6c2a05ec4fabf91aee0a66145ec8d056

6a34d54fcf9a0c38db9e808d553fbf7b

ITM

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Inte

rfaces/ITroveManager.sol

25d656df184c9e87059023a1b0cee01

17e28e45f7bf61a8713521d165efa3d5

b

ADL

Byte-

Masons/liquity-

dev

7086d2a

packages/contracts/contracts/LP

Rewards/Dependencies/Address.

sol

05a6a49cf9cc82c283f36d65e20f1e16f

bf850588cb3312ad3c52f15eb4b6a12

SEC

Byte-

Masons/liquity-

dev

7086d2a

packages/contracts/contracts/LP

Rewards/Dependencies/SafeER

C20.sol

2bd09642c108993133303aa419f9edef

8e94bcbab44411208e7e9e3da014c63

9

ILW

Byte-

Masons/liquity-

dev

7086d2a

packages/contracts/contracts/LP

Rewards/Interfaces/ILPTokenWra

pper.sol

bcfedabf6b5ae1487f11d40856510c14

64068c720bb4ff42c22f6ea0bf311b6a

IUI

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/LP

Rewards/Interfaces/IUnipool.sol

a0a344fec8abc86cfd17606b31d333fc9

fd45d038faed69ef78b60eebf6d0d0e

ERC

Byte-

Masons/liquity-

dev

7086d2a

packages/contracts/contracts/LP

Rewards/TestContracts/ERC20M

ock.sol

98294836397df21cc98a3a196ef28935

f8c267f7658b22da0edd442cfa969186

LCL

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/LQ

TY/LockupContract.sol

cabc456a0dfd3b1f02b71129cc9dba65

5fe1c09ebfe5027c28331d594efbed9d

GPB

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Ga

sPool.sol

9aab938a8b7985e223e5e0d13bbd720

d2a0e365706dd789668968d67ed8e95

81

MBM

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Mig

rations.sol

8ccccd7b7cda827b7a839a8dae6fac75

c85e4e8431d2ce8624470ae303aa281

e

MTG

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Mul

tiTroveGetter.sol

38effa9b3ea156805b18655641bfabb5

cd9fe762bd3e25651a3f444931a23de1

AUDIT SCOPE BYTEMASONS - STABLECOIN

ID Repo Commit File SHA256 Checksum

BOS

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Pro

xy/BorrowerOperationsScript.sol

05a207d8612abb8f75eab48257f90cf6

c197bb904e4a4733077ff8f294d9b325

BWS

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Pro

xy/BorrowerWrappersScript.sol

a7a41ac90f3b03ecdfa8c279a03ebf825

d6ce3d511ca197168b2620728d4e4d2

ERT

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Pro

xy/ERC20TransferScript.sol

b8d6fe5614585beb85474c112e4715c

1d4ee487f27829b4a17bc4fb79411c87

b

LQS

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Pro

xy/LQTYStakingScript.sol

b914f73e833ba81e98449d88e71ffee1

588ef6ec3fde5ffa90fc8ff15dc935fb

SPS

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Pro

xy/StabilityPoolScript.sol

1203a9e156482b50b487e551acd34d2

6ebaf4b864332d344dbc560fa4890103

e

TSP

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Pro

xy/TokenScript.sol

60436ad5cab76665145175d0329dcd1

0451fff19d3715930a94c12e3871c27f7

TMS

Byte-

Masons/liquity-

dev

7086d2a
packages/contracts/contracts/Pro

xy/TroveManagerScript.sol

a413eccfd9da6551ef8467f4e49311bc1

8b09b5e2038d8bdfa63e7f1582e3223

AUDIT SCOPE BYTEMASONS - STABLECOIN

APPROACH & METHODS BYTEMASONS - STABLECOIN

This report has been prepared for Bytemasons to discover issues and vulnerabilities in the source code of the Bytemasons -

Stablecoin project as well as any contract dependencies that were not part of an officially recognized library. A

comprehensive examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS BYTEMASONS - STABLECOIN

REVIEW NOTES BYTEMASONS - STABLECOIN

Overview

The Byte Masons is a development collective pursuing open, secure, and reliable systems focused on helping users

navigate the new web and Decentralized Finance (DeFi).

Byte Masons, in the pursuit of public good, seek to improve access to financial tools, transparency of financial organizations,

and ethics in business operations.

The Stablecoin is a decentralized protocol that allows ERC20 token holders to obtain maximum liquidity against their

collateral without paying interest. After locking up ERC20 tokens as collateral in a smart contract and creating an individual

position called a "trove", the user can get instant liquidity by minting LUSD, a USD-pegged stablecoin. Each trove is required

to be collateralized at a minimum of 110%. Any owner of LUSD can redeem their stablecoins for the underlying collateral at

any time. The redemption mechanism along with algorithmically adjusted fees guarantees a minimum stablecoin value of 1

USD.

The main user-facing components in the Stablecoin platform include:

BorrowerOperations.sol : contains the basic operations by which borrowers interact with their trove, such as trove

creation, collateral top-up/withdrawal, and stablecoin issuance and repayment.

TroveManager.sol : contains functionality for liquidations and redemptions.

StabilityPool.sol : contains functionality for making deposits and withdrawing compounded deposits,

accumulated collaterals, and LQTY gains.

Flow of Collateral Capital in Byte Masons

REVIEW NOTES BYTEMASONS - STABLECOIN

Flow of Collateral Profit in Byte Masons

REVIEW NOTES BYTEMASONS - STABLECOIN

Flow of LUSD in Byte Masons

REVIEW NOTES BYTEMASONS - STABLECOIN

Flow of LQTY TOKEN in Byte Masons

REVIEW NOTES BYTEMASONS - STABLECOIN

External Dependencies

In Byte Masons, the system inherits or uses a few depending injection contracts or addresses to fulfill the need of its

business logic that is defined below:

Contracts

The project uses Openzeppelin libraries and contracts for contract format and functionality.

The following contracts are referenced in various files of the codebase:

@openzeppelin/contracts/token/ERC20/ERC20.sol

@openzeppelin/contracts/token/ERC20/SafeERC20.sol

In addition to previous Openzeppelin libraries, the following external component interfaces are declared:

An ERC4626 vault interface

A Chainlink contract interface

A Tellor contract interface

The ActivePool.sol interacts with the third-party ERC4626 vault to allocate a certain (configurable) percentage of the

assets, which are kept by the ActivePool, for earning yield.

The BorrowOperation.sol , TroveManager.sol , and other contracts depend on the third-party Chainlink and Tellor

protocols to query the collateral price to do the business logic, such as open/close a trove, liquidations, etc.

The scope of the audit treats 3rd party entities as black boxes and assumes their functional correctness. However, in the real

world, 3rd parties can be compromised and this may lead to lost or stolen assets. In addition, upgrades of 3rd parties can

possibly create severe impacts, such as increasing fees of 3rd parties, migrating to new LP pools, etc.

Privileged Functions

In the Byte Masons project, multiple privileged roles are adopted to ensure a good runtime behavior in the project, which

were specified in the finding GLOBAL-01 | Centralization Related Risks.

The advantage of those privileged roles in the codebase is that the client reserves the ability to adjust the vault settings and

configuration according to the runtime required to best serve the community. It is also worthy to note the potential drawbacks

of these functions, which should be clearly stated through the client's action/plan. Additionally, if the private keys of the

privileged accounts are compromised, it could lead to devastating consequences for the project.

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to the community.

Any plan to invoke the aforementioned functions should be also considered to move to the execution queue of the

Timelock contract.

REVIEW NOTES BYTEMASONS - STABLECOIN

FINDINGS BYTEMASONS - STABLECOIN

This report has been prepared to discover issues and vulnerabilities for Bytemasons - Stablecoin. Through this audit, we

have uncovered 14 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static Analysis

to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

GLOBAL-01 Third Party Dependencies Volatile Code Minor Acknowledged

BMB-01 Centralization Related Risks
Centralization /

Privilege
Major Acknowledged

BMB-02
Potential Attacks When Price Oracle

Goes Down
Logical Issue Medium Partially Resolved

BMB-03 Susceptible To Signature Malleability Volatile Code Minor Resolved

BMB-04 Economic Model - Gas Compensation Logical Issue Minor Acknowledged

SPB-01 Event Is Not Emitted Compiler Error Minor Resolved

GLOBAL-02 Whitelist For The Collateral Tokens Logical Issue Informational Partially Resolved

GLOBAL-03
Governance Model - New Feature Of

Pause
Logical Issue Informational Resolved

BMB-05
The Tellor Protocol Does Not Support

The Fantom Chain For Now
Volatile Code Informational Acknowledged

BMB-06 Missing Error Messages Coding Style Informational Partially Resolved

FINDINGS BYTEMASONS - STABLECOIN

14
Total Findings

0
Critical

1
Major

1
Medium

4
Minor

8
Informational

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663313639001
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663308165529
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663665960475
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1661231508665
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1662540273668
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1664041919489
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663232286164
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663313025203
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1661323508519
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663048788127

ID Title Category Severity Status

BMB-07 Missing Emit Events Coding Style Informational Partially Resolved

BMB-08 Economic Model - Minimum Net Debt Logical Issue Informational Acknowledged

BMB-09
The Same MCR And CCR For All The

Allowed Collaterals
Logical Issue Informational Resolved

BOB-01
Missing A Check For Collateral On

adjustTrove()
Inconsistency Informational Resolved

FINDINGS BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663048788128
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663638012934
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663902438244
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663222375494

GLOBAL-01 THIRD PARTY DEPENDENCIES

Category Severity Location Status

Volatile Code Minor Acknowledged

Description

The ActivePool interacts with the third-party ERC4626 vault to allocate a certain (configurable) percentage of the assets,

which are kept by the ActivePool, for earning yield.

The BorrowOperation, TroveManager, and other contracts depend on the third-party Chainlink and Tellor protocols to query

the collateral price to do business logic, such as opening/closing a trove, liquidations, etc.

The scope of the audit treats 3rd party entities as black boxes and assumes their functional correctness. However, in the real

world, 3rd parties can be compromised and this may lead to lost or stolen assets. In addition, upgrades of 3rd parties can

possibly create severe impacts, such as increasing fees of 3rd parties, migrating to new LP pools, etc.

Recommendation

We understand that the business logic of this project requires interaction with ERC4626 vault, Chainlink, Tellor, etc. We

encourage the team to constantly monitor the statuses of 3rd parties to mitigate the side effects when unexpected activities

are observed.

Alleviation

[Bytemasons - Stablecoin]: The team acknowledged this issue and will monitor the status internally.

GLOBAL-01 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663313639001

BMB-01 CENTRALIZATION RELATED RISKS

Category Severity Location Status

Centralization

/ Privilege
Major

packages/contracts/contracts/ActivePool.sol: 62, 112, 117,

122, 126, 189, 279, 286, 294; packages/contracts/contracts/

BorrowerOperations.sol: 104~116, 597; packages/contract

s/contracts/CollSurplusPool.sol: 38~42, 106, 112, 118; pac

kages/contracts/contracts/DefaultPool.sol: 37~40, 106, 110

; packages/contracts/contracts/HintHelpers.sol: 24~27; pa

ckages/contracts/contracts/LQTY/CommunityIssuance.sol

: 66~70, 129; packages/contracts/contracts/LQTY/LQTYSta

king.sol: 64~72, 253, 257; packages/contracts/contracts/L

QTY/LockupContractFactory.sol: 45; packages/contracts/c

ontracts/LUSDToken.sol: 262, 266, 275, 279; packages/con

tracts/contracts/PriceFeed.sol: 86~91; packages/contract

s/contracts/SortedTroves.sol: 80, 402, 406; packages/contr

acts/contracts/StabilityPool.sol: 259~268, 846, 850; packag

es/contracts/contracts/TroveManager.sol: 244~256, 1508

Acknowledged

Description

In the contracts listed below, the owner always controls the contract and the contract does not have a public/external

function to renounce or transfer the ownership.

ActivePool.sol

The active Pool holds the collateral and LUSD debt for each collateral (but not LUSD tokens) for all active troves.

setAddresses() : set all the addresses related to the business logic of this contract, can only be called once;

setYieldingPercentage() : manage the state variable yieldingPercentage ;

setYieldingPercentageDrift() : manage the state variable yieldingPercentageDrift ;

setYieldClaimThreshold() : manage the state variable yieldClaimThreshold ;

setYieldDistributionParams() : manage the state variables yieldSplitTreasury , yieldSplitSP and

yieldSplitStaking ;

manualRebalance() : manually rebalance the collateral between the active pool and the corresponding ERC4626

vault.

Any compromise to the owner may allow a hacker to take advantage of this authority and change the configurations of the

contract.

BMB-01 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663308165529

In the contracts listed below, the owner will renounce the ownership of the contract after calling the function that initializes

configurations.

BorrowerOperations.sol : contains the basic operations by which borrowers interact with their Trove: Trove

creation, ETH top-up/withdrawal, stablecoin issuance, and repayment;

CollSurplusPool.sol : holds the ERC20 token surplus from troves that have been fully redeemed as well as from

troves with an ICR > MCR that were liquidated in Recovery Mode;

DefaultPool.sol : holds the total ERC20 token balance and records the total stablecoin debt of the liquidated

troves that are pending redistribution to active troves;

HintHelpers.sol : helper contract, containing the read-only functionality for calculation of accurate hints to be

supplied to borrower operations and redemptions;

PriceFeed.sol : contains functionality for obtaining the current Collateral:USD price, which the system uses for

calculating collateralization ratios;

SortedTroves.sol : a doubly linked list that stores addresses of Trove owners, sorted by their individual

collateralization ratio (ICR);

StabilityPool.sol : contains functionality for Stability Pool operations: making deposits, and withdrawing

compounded deposits and accumulated ERC20 and LQTY gains;

TroveManager.sol : contains functionality for liquidations and redemptions;

CommunityIssuance.sol : handles the issuance of LQTY tokens to Stability Providers as a function of time;

LockupContractFactory.sol : used to deploy LockupContracts;

LQTYStaking.sol : contains stake and unstake functionality for LQTY holders.

It is noticed that the logic of the project needs the contracts to call each other, thus, many contracts in the Stablecoin have

functions that require the caller to be a specified contract. Hence all contracts should be configured properly to ensure the

correctness of the project. The related contracts are listed below:

ActivePool.sol

_requireCallerIsBorrowerOperationsOrDefaultPool() : require the msg.sender must be

BorrowerOperations.sol , or DefaultPool.sol contracts, used in the

pullCollateralFromBorrowerOperationsOrDefaultPool() function;

_requireCallerIsBOorTroveMorSP() : require the msg.sender must be BorrowerOperations.sol , or

TroveManager.sol , or StabilityPool.sol contracts, used in the sendCollateral() , decreaseLUSDDebt()

functions;

_requireCallerIsBOorTroveM() : require the msg.sender must be BorrowerOperations.sol , or

TroveManager.sol contracts, used in the increaseLUSDDebt() function.

BorrowerOperations.sol

_requireCallerIsStabilityPool() : require the msg.sender must be StabilityPool.sol contract, used in the

moveCollateralGainToTrove() function.

BMB-01 BYTEMASONS - STABLECOIN

CollSurplusPool.sol

_requireCallerIsBorrowerOperations() : require the msg.sender must be BorrowerOperations.sol contract,

used in the claimColl() function;

_requireCallerIsTroveManager() : require the msg.sender must be TroveManager.sol contract, used in the

accountSurplus() function;

_requireCallerIsActivePool() : require the msg.sender must be ActivePool.sol contract, used in the

pullCollateralFromActivePool() function.

DefaultPool.sol

_requireCallerIsActivePool() : require the msg.sender must be ActivePool.sol contract, used in the

pullCollateralFromActivePool() function;

_requireCallerIsTroveManager() : require the msg.sender must be TroveManager.sol contract, used in the

sendCollateralToActivePool() , increaseLUSDDebt() , decreaseLUSDDebt() functions.

LUSDToken.sol

_requireCallerIsBorrowerOperations() : require msg.sender must be BorrowerOperations.sol contract,

used in the mint() function;

_requireCallerIsBOorTroveMorSP() : require msg.sender must be BorrowerOperations.sol , or

TroveManager.sol , or StabilityPool.sol contracts, used in the burn() function;

_requireCallerIsStabilityPool() : require msg.sender must be StabilityPool.sol contract, used in the

sendToPool() function;

_requireCallerIsTroveMorSP() : require msg.sender must be TroveManager.sol , or StabilityPool.sol

contracts, used in the returnFromPool() function.

SortedTroves.sol

_requireCallerIsTroveManager() : require msg.sender must be TroveManager.sol contract, used in the

remove() function;

_requireCallerIsBOorTroveM() : require msg.sender must be BorrowerOperations.sol , or

TroveManager.sol contracts, used in the insert() , reInsert() functions.

StabilityPool.sol

_requireCallerIsActivePool() : require msg.sender must be ActivePool.sol contract, used in the

updateRewardSum() function;

_requireCallerIsTroveManager() : require msg.sender must be TroveManager.sol contract, used in the

offset() function.

BMB-01 BYTEMASONS - STABLECOIN

TroveManager.sol

_requireCallerIsBorrowerOperations() : require msg.sender must be BorrowerOperations.sol contract,

used in the setTroveStatus() , increaseTroveColl() , decreaseTroveColl() , increaseTroveDebt() ,

decreaseTroveDebt() , applyPendingRewards() , updateTroveRewardSnapshots() , removeStake() ,

updateStakeAndTotalStakes() , closeTrove() , addTroveOwnerToArray() , decayBaseRateFromBorrowing()

functions.

CommunityIssurance.sol

_requireCallerIsStabilityPool() : require msg.sender must be StabilityPool.sol contract, used in the

issueLQTY() , sendLQTY() functions.

LQTYStaking.sol

_requireCallerIsTroveManagerOrActivePool() : require msg.sender must be TroveManager.sol contract,

used in the increaseF_Collateral() function;

_requireCallerIsBorrowerOperations() : require msg.sender must be BorrowerOperations.sol contract,

used in the increaseF_LUSD() function.

In the ActivePool.sol contract, the treasuryAddress address looks like an EOA (Externally Owned Account) because

this value is not checked by checkContract() when the owner calls the setAddresses() function. If this address is

indeed an EOA, it will be vulnerable to loss of assets due to private key compromise or other circumstances.

The following content is based on commit e47f8f2a5f8e60e1b04339511f90f8481ab26995.

LUSDToken.sol

_requireCallerIsGovernance() : require msg.sender must be a governance address, which is a contract

address and used in the updateGovernance() , updateGuardian() , upgradeProtocol() , unpauseMinting()

functions;

pauseMinting() : pause the mint of the LUSD token, controlled by guardianAddress and governanceAddress

contracts.

CollateralConfig.sol

updateCollateralRatios() : the owner of the contract can lower the collateralization requirements for a particular

collateral.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

BMB-01 BYTEMASONS - STABLECOIN

https://github.com/Byte-Masons/liquity-dev/compare/1029e4fb0e5b22248874c6ef229ae6bc12e2371f...e47f8f2a5f8e60e1b04339511f90f8481ab26995

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multi-signature wallets.

Indicatively, here are some feasible suggestions that would also mitigate the potential risk at a different level in terms of

short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement;

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles;

OR

Remove the risky functionality.

Noted: Recommend considering the long-term solution or the permanent solution. The project team shall make a decision

based on the current state of their project, timeline, and project resources.

Alleviation

[Bytemasons - Stablecoin]: Inside of ActivePool, we will retain ownership so we can configure variables that pertain to

collateral farming. However, the addresses can be set only once--which ensures that owner cannot alter any other

BMB-01 BYTEMASONS - STABLECOIN

properties. Moreover, ownership will be transferred to a multisig after deployment.

All other contracts renounce ownership at the end of the setAddresses/initializer function.

BMB-01 BYTEMASONS - STABLECOIN

BMB-02 POTENTIAL ATTACKS WHEN PRICE ORACLE GOES
DOWN

Category Severity Location Status

Logical

Issue
Medium

packages/contracts/contracts/BorrowerOperations.sol: 178, 273;

packages/contracts/contracts/PriceFeed.sol: 146
Partially Resolved

Description

Prices for collateral are fetched from Chainlink/Tellor in various calculations, most importantly the CR of a trove. The current

timeout for the price uses the constant variable TIMEOUT (4 hours).

Chainlink and Tellor may stop updating the price of an asset in certain cases. During these scenarios, untimely price

reactions could lead to an attack on stablecoin. The attacker can get the collateral at a lower price on other platforms and

use these collaterals to borrow the stablecoin LUSD, which is more than the actual value.

In addition, there is no mint cap on the stablecoin LUSD and no pause function. As a result, the attacker can repeatedly

arbitrage through the above method.

For example, the Venus protocol, a Compound-forked lending platform, was attacked in a similar case.

Reference:

https://www.tronweekly.com/terra-causes-11m-in-losses-for-venus-protocol

https://cointelegraph.com/news/defi-protocols-declare-losses-as-attackers-exploit-luna-price-feed-discrepancy

Recommendation

The auditing team recommends monitoring the status of Chainlink/Tellor, adding the pause/unpause function for LUSD, or

adding corresponding logic to avoid this.

Alleviation

[Bytemasons - Stablecoin]: The "extra-mile" solution: read from an on-chain TWAP (for LUSD-stable pairing perhaps). If

TWAP is reporting price that's higher than the oracle reported price by 10%, pause redemptions. On the other hand, if TWAP

is reporting price that's lower than the oracle reported price by 10%, pause liquidations and minting.

The "extra-inch" solution: case where price goes up isn't as bad as case where price goes down (since redemption fees

scales with the amount being redeemed, but borrow fee doesn't). So if we solely focus on price down case, we need to

guard against minting additional LUSD.

This could perhaps be achieved by just adding a pause functionality in the mint() function of LUSD and we won't have to

touch other contracts of the system.

BMB-02 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663665960475
https://www.tronweekly.com/terra-causes-11m-in-losses-for-venus-protocol
https://cointelegraph.com/news/defi-protocols-declare-losses-as-attackers-exploit-luna-price-feed-discrepancy

We are currently leaning towards the latter.

The team partially resolved this issue by adding the pause/unpause function for LUSD in commit

e47f8f2a5f8e60e1b04339511f90f8481ab26995, but still need to regularly monitor the oracles.

BMB-02 BYTEMASONS - STABLECOIN

https://github.com/Byte-Masons/liquity-dev/compare/1029e4fb0e5b22248874c6ef229ae6bc12e2371f...e47f8f2a5f8e60e1b04339511f90f8481ab26995

BMB-03 SUSCEPTIBLE TO SIGNATURE MALLEABILITY

Category Severity Location Status

Volatile

Code
Minor

packages/contracts/contracts/LQTY/LQTYToken.sol: 257; packages/contra

cts/contracts/LUSDToken.sol: 189
Resolved

Description

The signature malleability is possible within the Elliptic Curve cryptographic system. An Elliptic Curve is symmetric on the X-

axis, meaning two points can exist with the same X value. In the r , s and v representation this permits us to carefully

adjust s to produce a second valid signature for the same r , thus breaking the assumption that a signature cannot be

replayed in what is known as a replay-attack.

Recommendation

To fix this we would recommend adding the check from EIP-2, point 2 (https://eips.ethereum.org/EIPS/eip-2), and also check

for the v value to ensure the off-chain library is properly used. For example, the ecrecoverFromSig function from SWC-117

(https://swcregistry.io/docs/SWC-117).

OpenZeppelin's ECDSA library contract contains proper implementation for recovering the address from the signature that is

not prone to signature malleability. We suggest importing that and using it in the contract.

Alleviation

[Bytemasons - Stablecoin]: The LQTYToken will not be used by us. However, we will make the recommended change

(using OZ's ECDSA library) within the LUSD token code since we will be using that to deploy the stablecoin contract. We will

fix this in the future.

The team partially resolved this issue by adding the check in the LUSDToken.sol in commit

e47f8f2a5f8e60e1b04339511f90f8481ab26995.

BMB-03 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1661231508665
https://eips.ethereum.org/EIPS/eip-2
https://swcregistry.io/docs/SWC-117
https://github.com/Byte-Masons/liquity-dev/compare/1029e4fb0e5b22248874c6ef229ae6bc12e2371f...e47f8f2a5f8e60e1b04339511f90f8481ab26995

BMB-04 ECONOMIC MODEL - GAS COMPENSATION

Category Severity Location Status

Logical

Issue
Minor

packages/contracts/contracts/BorrowerOperations.sol: 194; packages/

contracts/contracts/Dependencies/LiquityBase.sol: 28, 47~49; packag

es/contracts/contracts/TroveManager.sol: 552

Acknowledged

Description

The protocol directly compensates liquidators for their gas costs to incentivize prompt liquidations in both normal and

extreme periods of high gas prices.

The gas compensation formula is shown below: Gas compensation = 200 LUSD + 0.5% of trove’s collateral

To ensure that larger Troves are liquidated promptly even in extreme high gas price periods. The larger the Trove, the

stronger the incentive to liquidate it.

200 LUSD of gas compensation makes sense for the gas cost on Ethereum, but not necessarily for other chains, like the

Fantom chain, because the prices of different chains' native tokens are different. The price of ETH is 1519 USD, and the

price of FTM is 0.27 USD at the time of writing.

Unreasonable gas compensation is also bad for the capital usage of borrowers, and will also expose the chances to the

liquidators to arbitrage on the gas compensation of troves, which are under-collateralized.

Here is a detailed blog published on Nov 2022, comparing gas costs between Ethereum and Fantom:

Comparing fees on Fantom/Ethereum

Here are gas trackers for the two chains:

Ethereum Gas Tracker

Fantom Gas Tracker

Recommendation

Consider setting a reasonable gas compensation for the target chain to increase the capital utilization and avoid the arbitrage

on the gas compensation of the liquidated troves.

Alleviation

[Bytemasons - Stablecoin]: Chain is TBD. However if we do launch on a chain with cheap TX/gas, we will definitely be

tweaking the gas compensation parameter.

BMB-04 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1662540273668
https://fantom.foundation/blog/understanding-fantom-transaction-fees/
https://etherscan.io/gastracker
https://ftmscan.com/gastracker

SPB-01 EVENT IS NOT EMITTED

Category Severity Location Status

Compiler Error Minor packages/contracts/contracts/StabilityPool.sol: 498, 608 Resolved

Description

The StabilityPool contract contains an event StabilityPoolCollateralBalanceUpdated that is used in the functions

updateRewardSum() and _moveOffsetCollAndDebt() .

498 StabilityPoolCollateralBalanceUpdated(_collateral,

collAmounts[_collateral]);

However, this event is not emitted using the emit keyword, causing a compiler error.

Recommendation

We recommend emitting the event by using the emit keyword.

Alleviation

[Bytemason - Stablecoin]: The team resolved this issue by adding the emit keyword in commit

1029e4fb0e5b22248874c6ef229ae6bc12e2371f.

SPB-01 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1664041919489
https://github.com/Byte-Masons/liquity-dev/compare/7086d2aa437420d4a8c8a6073bed258d874766c9...1029e4fb0e5b22248874c6ef229ae6bc12e2371f

GLOBAL-02 WHITELIST FOR THE COLLATERAL TOKENS

Category Severity Location Status

Logical Issue Informational Partially Resolved

Description

The Bytemasons - Stablecoin protocol support ERC20-compatible collateral type addresses. To reduce potential risk, the

collateral candidates should be strictly selected and obtain the community's consensus.

The following advice is provided to select collateral candidates:

Deflationary tokens should not be used as collateral as it is not supported by this protocol.

Tokens that could be arbitrarily minted by a centralized project owner are not suitable for candidacy.

Tokens related to an algorithm, like LUNC/USTC, should be deeply considered before allowing them to be used as

collateral.

Recommendation

Consider strictly selecting the collateral tokens to avoid potential risks and acquire the community's consensus on these

tokens.

Alleviation

[Bytemasons - Stablecoin]: We have thought long and hard about the collateral and have decided to use no more than 2-3

highly liquid and decentralized ERC20 tokens that play well with the system like WETH and WBTC.

GLOBAL-02 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663232286164

GLOBAL-03 GOVERNANCE MODEL - NEW FEATURE OF PAUSE

Category Severity Location Status

Logical Issue Informational Resolved

Description

The protocol specifies the allowed collateral during initialization and can not modify them afterward. The strategy of initializing

the allowed collateral makes the protocol more decentralized.

However, the potential risk still comes with the allowed collateral. For example, are the collateral tokens good capital? Would

any hackers compromise them?

Considering the above worries, a pause feature would be useful to protect this protocol from losing their capital and

propagating the risk in extreme cases. An example strategy is pausing the functions of opening a trove and adding collateral,

but still allowing functions to redeeming LUSD and closing troves, to protect the LUSD from being maliciously minted by a

compromised collateral.

However, we need to keep in mind that the pause action should gain the consensus of the community and be under multiple

people's control, requiring a governance strategy, e.g., a multi-signature should at least should be applied for it.

Recommendation

Consider adding the pause feature on specified functions to protect the protocol and not propagate any risk. At the same,

apply an appropriate governance strategy on the pause feature.

Alleviation

[Bytemasons - Stablecoin]: The team resolved this issue by the pause/unpause function for LUSD, which is controlled by

the governance contract in commit e47f8f2a5f8e60e1b04339511f90f8481ab26995.

GLOBAL-03 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663313025203
https://github.com/Byte-Masons/liquity-dev/compare/1029e4fb0e5b22248874c6ef229ae6bc12e2371f...e47f8f2a5f8e60e1b04339511f90f8481ab26995

BMB-05 THE TELLOR PROTOCOL DOES NOT SUPPORT THE
FANTOM CHAIN FOR NOW

Category Severity Location Status

Volatile

Code
Informational

packages/contracts/contracts/Dependencies/TellorCaller.sol: 1

8; packages/contracts/contracts/PriceFeed.sol: 214
Acknowledged

Description

The most current Collateral:USD price is important to the Bytemasons - Stablecoin protocol to decide which strategy to be

adopted. Thus, two price oracles are applied in the protocol to ensure the current Collateral:USD price is available. The

PriceFeed contract provides the protocol for the Collateral:USD price and will use the latest price from Tellor when the

Chainlink Oracle is down.

Tellor is a decentralized oracle protocol that incentivizes an open, permissionless network of data reporting and data

validation, ensuring that data can be provided by anyone and checked by everyone.

However, the Bytemasons - Stablecoin protocol intends to be deployed on the Fantom chain and Tellor does not support the

Fantom chain for now per their official documentation contracts-reference. As a result, the functionality of the TellorCaller

within PriceFeed will fail.

Recommendation

Consider applying an available price oracle on the target chain.

Alleviation

[Bytemasons - Stablecoin]: Chain is still TBD. However, if we decide to launch on Fantom, we are in contact with the Tellor

team to have a deployment ready for us should we decide to.

BMB-05 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1661323508519
https://docs.tellor.io/tellor/the-basics/contracts-reference

BMB-06 MISSING ERROR MESSAGES

Category Severity Location Status

Coding

Style
Informational

packages/contracts/contracts/ActivePool.sol: 77, 84, 96, 10

1, 113, 118, 127; packages/contracts/contracts/PriceFeed.s

ol: 97, 98, 99, 111; packages/contracts/contracts/TroveMan

ager.sol: 260, 535, 659, 679, 1029, 1436, 1509, 1513, 1517

, 1521, 1525, 1529, 1534, 1538

Partially Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is better to provide a

string message containing details about the error that will be passed back to the caller.

Recommendation

We advise adding error messages to the linked require statements.

Alleviation

[Bytemasons - Stablecoin]: Error strings were removed from TroveManager due to contract size issues. However, for the

rest of the entries here (ActivePool and PriceFeed), we can go back and add appropriate error messages. We will fix them in

the future.

The team partially resolved this issue by adding part of the missing error messages in commit

e47f8f2a5f8e60e1b04339511f90f8481ab26995.

BMB-06 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663048788127
https://github.com/Byte-Masons/liquity-dev/compare/1029e4fb0e5b22248874c6ef229ae6bc12e2371f...e47f8f2a5f8e60e1b04339511f90f8481ab26995

BMB-07 MISSING EMIT EVENTS

Category Severity Location Status

Coding

Style
Informational

packages/contracts/contracts/ActivePool.sol: 112, 117, 122

, 126, 189; packages/contracts/contracts/PriceFeed.sol: 86
Partially Resolved

Description

There should always be events emitted in the sensitive functions that are controlled by centralization roles.

Recommendation

It is recommended emitting events for the sensitive functions that are controlled by centralization roles.

Alleviation

[Bytemasons - Stablecoin]: The team partially resolved this issue by adding part of the missing events in commit

e47f8f2a5f8e60e1b04339511f90f8481ab26995.

BMB-07 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663048788128
https://github.com/Byte-Masons/liquity-dev/compare/1029e4fb0e5b22248874c6ef229ae6bc12e2371f...e47f8f2a5f8e60e1b04339511f90f8481ab26995

BMB-08 ECONOMIC MODEL - MINIMUM NET DEBT

Category Severity Location Status

Logical

Issue
Informational

packages/contracts/contracts/BorrowerOperations.sol: 191; pa

ckages/contracts/contracts/Dependencies/LiquityBase.sol: 31
Acknowledged

Description

Note that the minimum net debt is 1800 LUSD, which makes sense if the protocol is deployed on the Ethereum chain since

the gas fee and gas compensation are high there. However, the gas fee is cheaper for the Fantom chain.

To lower the threshold for allowing people to join this protocol, reducing the value for the MIN_NET_DEBT on the Fantom

chain could make more sense.

Recommendation

Consider setting a reasonable minimum net debt for the target chain.

Alleviation

[Bytemasons - Stablecoin]: Chain is TBD. However if we do launch on a chain with cheap TX/gas, we will definitely be

tweaking the gas compensation parameter.

BMB-08 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663638012934

BMB-09 THE SAME MCR AND CCR FOR ALL THE ALLOWED
COLLATERALS

Category Severity Location Status

Logical

Issue
Informational

packages/contracts/contracts/Dependencies/LiquityBase.sol: 22~25

; packages/contracts/contracts/TroveManager.sol: 201, 203, 732, 78

4

Resolved

Description

Borrowers can open a separate trove for each collateral type they would like to mint stablecoins against. This allows the

protocol to isolate the various markets.

However, we notice that the two fundamental factors, MCR and CCR, are consistent across all allowed collaterals. These are

widely used in opening/closing/adjusting a Trove, liquidations, and so on.

The value of the allowed collaterals might vary widely due to the differences in their liquidity, stability, community, and other

factors. Thus, the two fixed values of MCR and CCR probably cannot reflect and be consistent with the actual value of the

allowed ERC20 tokens.

Please check if the current design meets the business requirements and check whether specifying different MCRs and

CCRs for different collaterals are more suitable.

It is also worth noting that the MCR reflects the borrowing power for the specified collateral, is the liquidation threshold, and

determines the rate of collateral being liquidated when the trove is under-collateralized. Both the MCR and CCR are protocol-

level parameters, and therefore should have deep consideration when trying to adjust them.

Recommendation

Recommend checking whether different MCRs and CCRs are required for each collateral and doing the adjust if needed.

Alleviation

[Bytemason - Stablecoin]: The team resolved this issue by querying MCR and CCR from a config contract for each

collateral in commit 1029e4fb0e5b22248874c6ef229ae6bc12e2371f.

BMB-09 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663902438244
https://github.com/Byte-Masons/liquity-dev/compare/7086d2aa437420d4a8c8a6073bed258d874766c9...1029e4fb0e5b22248874c6ef229ae6bc12e2371f

BOB-01 MISSING A CHECK FOR COLLATERAL ON adjustTrove()

Category Severity Location Status

Inconsistency Informational packages/contracts/contracts/BorrowerOperations.sol: 259 Resolved

Description

It is noticed that the function adjustTrove() is very flexible and is a combination of addColl() , withdrawColl() ,

withdrawLUSD() and repayLUSD() .

However, when _collTopUp is greater than 0, the behavior of this function is similar to the function addColl() , which

requires a check for collateral by calling _requireSufficientCollateralBalanceAndAllowance() before actually adjusting

troves.

Thus, in this case, adjustTrove() misses a check for the user's collateral balance.

Recommendation

Consider adding the missing check for the user's collateral balance in the adjustTrove() function when the argument

_collTopUp greater than zero.

Alleviation

[Bytemason - Stablecoin]: The team resolved this issue by adding the check for the user's collateral balance, in commit

1029e4fb0e5b22248874c6ef229ae6bc12e2371f.

BOB-01 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663222375494
https://github.com/Byte-Masons/liquity-dev/compare/7086d2aa437420d4a8c8a6073bed258d874766c9...1029e4fb0e5b22248874c6ef229ae6bc12e2371f

OPTIMIZATIONS BYTEMASONS - STABLECOIN

ID Title Category Severity Status

BMB-10 Useless Statement And Variables Gas Optimization Optimization Partially Resolved

BMB-11 Redundant Code Components Volatile Code Optimization Resolved

OPTIMIZATIONS BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1661499638483
https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663056389667

BMB-10 USELESS STATEMENT AND VARIABLES

Category Severity Location Status

Gas

Optimization
Optimization

packages/contracts/contracts/BorrowerOperations.sol: 1

84; packages/contracts/contracts/PriceFeed.sol: 33~34;

packages/contracts/contracts/StabilityPool.sol: 341, 385

Partially Resolved

Description

In the contract BorrowerOperations.sol , the linked statement does nothing.

184 vars.LUSDFee;

The state variables borrowerOperationsAddress and troveManagerAddress , in the PriceFeed.sol contract, are never

used.

The variable LUSDLoss , in the StabilityPool.sol contract, is declared and assigned but never used.

Recommendation

Consider removing the useless statement and variables.

Alleviation

[Bytemasons - Stablecoin]: The team partially resolved this issue by removing a redundant statement and state variables,

in the commit 1029e4fb0e5b22248874c6ef229ae6bc12e2371f.

BMB-10 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1661499638483
https://github.com/Byte-Masons/liquity-dev/compare/7086d2aa437420d4a8c8a6073bed258d874766c9...1029e4fb0e5b22248874c6ef229ae6bc12e2371f

BMB-11 REDUNDANT CODE COMPONENTS

Category Severity Location Status

Volatile

Code
Optimization

packages/contracts/contracts/BorrowerOperations.sol: 506; package

s/contracts/contracts/StabilityPool.sol: 869
Resolved

Description

The linked statements do not affect the functionality of the codebase and appear to be either leftovers from test code or older

functionality.

Recommendation

We advise to remove the redundant statements for production environments.

Alleviation

[Bytemasons - Stablecoin]: The team resolved this issue by removing the redundant functions in commit

1029e4fb0e5b22248874c6ef229ae6bc12e2371f.

BMB-11 BYTEMASONS - STABLECOIN

https://acc.audit.certikpowered.info/project/ae96b870-febd-11ec-937f-27ed2ab6f556/report?fid=1663056389667
https://github.com/Byte-Masons/liquity-dev/compare/7086d2aa437420d4a8c8a6073bed258d874766c9...1029e4fb0e5b22248874c6ef229ae6bc12e2371f

FORMAL VERIFICATION BYTEMASONS - STABLECOIN

Formal guarantees about the behavior of smart contracts can be obtained by reasoning about properties relating to the entire

contract (e.g. contract invariants) or to specific functions of the contract. Once such properties are proven to be valid, they

guarantee that the contract behaves as specified by the property. As part of this audit, we applied automated formal

verification (symbolic model checking) to prove that well-known functions in the smart contracts adhere to their expected

behavior.

Considered Functions And Scope

Verification of ERC-20 compliance

We verified properties of the public interface of those token contracts that implement the ERC-20 interface. This covers

Functions transfer and transferFrom that are widely used for token transfers,

functions approve and allowance that enable the owner of an account to delegate a certain subset of her tokens

to another account (i.e. to grant an allowance), and

the functions balanceOf and totalSupply , which are verified to correctly reflect the internal state of the contract.

The properties that were considered within the scope of this audit are as follows:

Property Name Title

erc20-transfer-revert-zero Function transfer Prevents Transfers to the Zero Address

erc20-transfer-succeed-normal Function transfer Succeeds on Admissible Non-self Transfers

erc20-transfer-correct-amount Function transfer Transfers the Correct Amount in Non-self Transfers

erc20-transfer-succeed-self Function transfer Succeeds on Admissible Self Transfers

erc20-transfer-correct-amount-self Function transfer Transfers the Correct Amount in Self Transfers

erc20-transfer-change-state Function transfer Has No Unexpected State Changes

erc20-transfer-exceed-balance
Function transfer Fails if Requested Amount Exceeds Available

Balance

erc20-transfer-recipient-overflow Function transfer Prevents Overflows in the Recipient's Balance

erc20-transfer-false
If Function transfer Returns false , the Contract State Has Not Been

Changed

erc20-transfer-never-return-false Function transfer Never Returns false

FORMAL VERIFICATION BYTEMASONS - STABLECOIN

Property Name Title

erc20-transferfrom-revert-from-zero Function transferFrom Fails for Transfers From the Zero Address

erc20-transferfrom-revert-to-zero Function transferFrom Fails for Transfers To the Zero Address

erc20-transferfrom-succeed-normal Function transferFrom Succeeds on Admissible Non-self Transfers

erc20-transferfrom-correct-amount-self Function transferFrom Performs Self Transfers Correctly

erc20-transferfrom-succeed-self Function transferFrom Succeeds on Admissible Self Transfers

erc20-transferfrom-correct-amount
Function transferFrom Transfers the Correct Amount in Non-self

Transfers

erc20-transferfrom-correct-allowance Function transferFrom Updated the Allowance Correctly

erc20-transferfrom-fail-exceed-balance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Balance

erc20-transferfrom-change-state Function transferFrom Has No Unexpected State Changes

erc20-transferfrom-fail-exceed-allowance
Function transferFrom Fails if the Requested Amount Exceeds the

Available Allowance

erc20-totalsupply-succeed-always Function totalSupply Always Succeeds

erc20-transferfrom-fail-recipient-overflow Function transferFrom Prevents Overflows in the Recipient's Balance

erc20-transferfrom-false
If Function transferFrom Returns false , the Contract's State Has Not

Been Changed

erc20-transferfrom-never-return-false Function transferFrom Never Returns false

erc20-totalsupply-change-state Function totalSupply Does Not Change the Contract's State

erc20-totalsupply-correct-value
Function totalSupply Returns the Value of the Corresponding State

Variable

erc20-balanceof-succeed-always Function balanceOf Always Succeeds

erc20-balanceof-correct-value Function balanceOf Returns the Correct Value

erc20-allowance-succeed-always Function allowance Always Succeeds

erc20-balanceof-change-state Function balanceOf Does Not Change the Contract's State

erc20-allowance-correct-value Function allowance Returns Correct Value

FORMAL VERIFICATION BYTEMASONS - STABLECOIN

Property Name Title

erc20-allowance-change-state Function allowance Does Not Change the Contract's State

erc20-approve-revert-zero Function approve Prevents Giving Approvals For the Zero Address

erc20-approve-succeed-normal Function approve Succeeds for Admissible Inputs

erc20-approve-correct-amount Function approve Updates the Approval Mapping Correctly

erc20-approve-change-state Function approve Has No Unexpected State Changes

erc20-approve-false
If Function approve Returns false , the Contract's State Has Not Been

Changed

erc20-approve-never-return-false Function approve Never Returns false

Verification Results

For the following contracts, model checking established that each of the 38 properties that were in scope of this audit (see

scope) are valid:

Contract ERC20Mock (Source File
packages/contracts/contracts/LPRewards/TestContracts/ERC20Mock.sol)

FORMAL VERIFICATION BYTEMASONS - STABLECOIN

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-succeed-normal True

erc20-transfer-correct-amount True

erc20-transfer-succeed-self True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-recipient-overflow True

erc20-transfer-false True

erc20-transfer-never-return-false True

FORMAL VERIFICATION BYTEMASONS - STABLECOIN

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-succeed-normal True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-succeed-self True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-change-state True

erc20-totalsupply-correct-value True

FORMAL VERIFICATION BYTEMASONS - STABLECOIN

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

In the remainder of this section, we list all contracts where model checking of at least one property was not successful. There

are several reasons why this could happen:

Model checking reports a counterexample that violates the property. Depending on the counterexample,this occurs if

The specification of the property is too generic and does not accurately capture the intended behavior of

the smart contract. In that case, the counterexample does not indicate a problem in the underlying smart

contract. We report such instances as being "inapplicable".

FORMAL VERIFICATION BYTEMASONS - STABLECOIN

The property is applicable to the smart contract. In that case, the counterexample showcases a problem

in the smart contract and a correspond finding is reported separately in the Findings section of this

report. In the following tables, we report such instances as "invalid". The distinction between spurious

and actual counterexamples is done manually by the auditors.

The model checking result is inconclusive. Such a result does not indicate a problem in the underlying smart

contract. An inconclusive result may occur if

The model checking engine fails to construct a proof. This can happen if the logical deductions

necessary are beyond the capabilities of the automated reasoning tool. It is a technical limitation of all

proof engines and cannot be avoided in general.

The model checking engine runs out of time or memory and did not produce a result. This can happen if

automatic abstraction techniques are ineffective or of the state space is too big.

Contract LUSDToken (Source File packages/contracts/contracts/LUSDToken.sol)

Detailed results for function transfer

Property Name Final Result Remarks

erc20-transfer-revert-zero True

erc20-transfer-correct-amount True

erc20-transfer-correct-amount-self True

erc20-transfer-change-state True

erc20-transfer-exceed-balance True

erc20-transfer-false True

erc20-transfer-recipient-overflow True

erc20-transfer-never-return-false True

erc20-transfer-succeed-normal Inapplicable

erc20-transfer-succeed-self Inapplicable Intended behavior

FORMAL VERIFICATION BYTEMASONS - STABLECOIN

Detailed results for function transferFrom

Property Name Final Result Remarks

erc20-transferfrom-revert-from-zero True

erc20-transferfrom-revert-to-zero True

erc20-transferfrom-correct-amount True

erc20-transferfrom-correct-amount-self True

erc20-transferfrom-correct-allowance True

erc20-transferfrom-fail-exceed-balance True

erc20-transferfrom-change-state True

erc20-transferfrom-fail-exceed-allowance True

erc20-transferfrom-fail-recipient-overflow True

erc20-transferfrom-false True

erc20-transferfrom-never-return-false True

erc20-transferfrom-succeed-normal Inapplicable Intended behavior

erc20-transferfrom-succeed-self Inapplicable Intended behavior

Detailed results for function totalSupply

Property Name Final Result Remarks

erc20-totalsupply-succeed-always True

erc20-totalsupply-correct-value True

erc20-totalsupply-change-state True

FORMAL VERIFICATION BYTEMASONS - STABLECOIN

Detailed results for function balanceOf

Property Name Final Result Remarks

erc20-balanceof-succeed-always True

erc20-balanceof-correct-value True

erc20-balanceof-change-state True

Detailed results for function allowance

Property Name Final Result Remarks

erc20-allowance-succeed-always True

erc20-allowance-correct-value True

erc20-allowance-change-state True

Detailed results for function approve

Property Name Final Result Remarks

erc20-approve-revert-zero True

erc20-approve-succeed-normal True

erc20-approve-correct-amount True

erc20-approve-change-state True

erc20-approve-false True

erc20-approve-never-return-false True

FORMAL VERIFICATION BYTEMASONS - STABLECOIN

APPENDIX BYTEMASONS - STABLECOIN

Finding Categories

Categories Description

Centralization

/ Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas

Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue
Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Coding Style
Coding Style findings usually do not affect the generated byte-code but rather comment on how to

make the codebase more legible and, as a result, easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Compiler

Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to compile

using the specified version of the project.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX BYTEMASONS - STABLECOIN

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with

the Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL

WARRANTIES ARISING FROM COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE

FOREGOING, CERTIK MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE

ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE

USE THEREOF, WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE,

ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE

DISCLAIMER BYTEMASONS - STABLECOIN

FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY

KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE

COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE, APPLICATIONS, SYSTEMS OR SERVICES, OPERATE

WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR

THAT ANY ERRORS OR DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME

NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER BYTEMASONS - STABLECOIN

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Bytemasons - Stablecoin Security Assessment CertiK Verified on Nov 28th, 2022 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

